Light extraction enhancement with radiation pattern shaping of LEDs by waveguiding nanorods with impedance-matching tips.

نویسندگان

  • Yu-Hsuan Hsiao
  • Cheng-Ying Chen
  • Li-Chuan Huang
  • Guan-Jhong Lin
  • Der-Hsien Lien
  • Jian-Jang Huang
  • Jr-Hau He
چکیده

Syringe-like ZnO nanorods (NRs) were fabricated on InGaN/GaN light emitting diodes (LEDs) by a hydrothermal method. Without sacrificing the electrical performances of LEDs, syringe-like NRs can enhance light extraction capability by 10.5% at 20 mA and shape the radiation profile with a view angle collimated from 136° to 121°. By performing optical experiments and simulation, it is found that the superior light extraction efficiency with a more collimated radiation pattern is attributed to the waveguiding effect of NRs and the mitigation of abrupt index change by the tapered ends of syringe-like ZnO NRs. This work demonstrates the importance of the nanostructure morphology in LED performances and provides the architecture design guidelines of nanostructures to a variety of optical devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of light extraction in GaN-based light-emitting diodes using rough beveled ZnO nanocone arrays.

A remarkable enhancement of light extraction efficiency in GaN-based blue light-emitting diodes (LEDs) with rough beveled ZnO nanocone arrays grown on the planar indium tin oxide (ITO) layer is reported. The light output power of LEDs with rough beveled ZnO nanocone arrays was increased by about 110% at 20 mA compared with conventional LEDs with planar ITO. The light extraction efficiency of Ga...

متن کامل

Room-temperature larger-scale highly ordered nanorod imprints of ZnO film.

Room-temperature large-scale highly ordered nanorod-patterned ZnO films directly integrated on III-nitride light-emitting diodes (LEDs) are proposed and demonstrated via low-cost modified nanoimprinting, avoiding a high-temperature process. with a 600 nm pitch on top of a critical 200 nm thick Imprinting ZnO nanorods of 200 nm in diameter and 200 nm in height continuous ZnO wetting layer, the l...

متن کامل

GaN-based Light Emitting Diode with Embedded SiO2 Pattern for Enhanced Light Extraction

The n-GaN layer of c-plane GaInN/GaN light emitting diodes (LEDs) on sapphire was modified to contain a pattern of SiO2 nanorods. This embedded pattern of 300 nm long rods and diameter of 200 400 nm was created by thermal agglomeration of a Ni mask layer and subsequent dry-etching. The light output power (LOP) and external quantum efficiency (EQE) of the resulting LEDs increased both by some 25...

متن کامل

Enhancement of light extraction efficiency of GaN-based light-emitting diodes by ZnO nanorods with different sizes.

The improvement of the optical output power of GaN-based light emitting diodes (LEDs) was achieved by employing nano-sized flat-top hexagonal ZnO rods. ZnO nanorods (NRs) with the average diameters of 250, 350, and 580 nm were grown on p-GaN top surfaces by a simple wet-chemical method at relatively low temperature (90 degrees C) to investigate the effect of the diameter of ZnO NRs on the light...

متن کامل

Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes.

This paper presents a novel and mass-producible technique to fabricate indium-tin-oxide (ITO) nanorods which serve as an omnidirectional transparent conductive layer (TCL) for InGaN/GaN light emitting diodes (LEDs). The characteristic nanorods, prepared by oblique electron-beam evaporation in a nitrogen ambient, demonstrate high optical transmittance (T>90%) for the wavelength range of 450nm to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2014